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Abstrsct. The choice of a convenient self-dual cell within a real space renormalisation 
group framework enables a satisfactory treatment of the anisotropic square lattice q-state 
Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover 
exponent q5 as well as the expected universality behaviour (renormalisation flow sense) 
are recovered for any linear scaling factor b and all values of q(q s 4). The b = 2 and 
b = 3 approximate correlation length critical exponent Y is calculated for all .values of q 
and compared with the den Nijs conjecture. The same calculation is performed, for all 
values of b, for the exponent v(d = 1) associated with the one-dimensional limit and the 
exact result v(d  = 1) = 1 is recovered in the limit b -+ Q). 

1. Introduction 

During recent years considerable effort has been dedicated to the construction of real 
space renormalisation group (RG) frameworks suitable for the treatment of several 
models like the site and bond percolation, king and q-state Potts ones. A particular 
case which has frequently been focused upon is the anisotropic square lattice q-state 
Potts ferromagnet whose Hamiltonian is given by 

where Jii = J, a 0 (Jii = Jy 3 0) if sites i and j are ‘horizontal’ (‘vertical’) first neighbours 
(as a matter of fact, the present paper remains practically unchanged in the case where 
one or both coupling constants are negative). Any satisfactory RG proposal for this 
problem should recover the following facts. 

(i) The transition is continuous (first order) if 0 =s q S 4 (q > 4) according to Baxter 
(1973), Straley and Fisher (1973), and Kim and Joseph (1975). 

(ii) All properties of the system are invariant through x f, y permutation. 
(iii) The anisotropic square lattice is self-dual, therefore the dual transformation 

(Kim and Joseph 1975, Burkhardt and Southern 1978, Baxter et a2 1978) 

interchanges its para- and ferromagnetic phases, and consequently the critical frontier 
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is given by 

where we have introduced convenient variables (hereafter referred to as rrunsmissiuities 
(see Tsallis 1981, Tsallis and Levy 1981, and references therein), through 

(iv) The system is universal, i.e. its critical behaviour for fixed q is one and the 
same for all non-vanishing values of J, and Jy (in particular, the correlation length 
critical exponent v is the same along the critical frontier excepted both one-dimensional 
limits J, = 0 or Jy = 0). 

(v) The crossover exponent q5 associated with the one-dimensional limits equals 
one; this fact means that if we consider, for instance, the limit JJJ, + 0, the critical 
frontier satisfies t, a3 1 - 1,. It is clear that this weak restriction is satisfied by equation 
(3) which implies ty - (1 - tx)/q.  

(vi) The correlation length critical exponent v(d = 1) associated with the one- 
dimensional limits equals one. 

(vii) The q dependence of the critical exponent v (for J,, J,, # 0) has not yet been 
rigorously established, however, the den Nijs (1979) conjecture, namely 

2 
3[2 + T/(COS-’ Jq/2 - T)] 

V =  

- v / 3 4  for q + o ( 5 ’ )  

is possibly exact. 
An RG treatment of the present problem consists in the construction of a two- 

dimensional recursive relation (generated by the renormalisation of an appropriate 
cell into a smaller one) which we shall denote 

t: = Ri(tX, 4) t :  =Ri(tx, f Y )  (4) 

where b > 1 is the linear scaling factor. This recursive relation is expected to provide 
fixed points (try t:) which satisfy 

r z  =I?:(#:, t? )  t ;  =R;( t : ,  t?)  17) 

as well as a Jacobian matrix 

at:/at, at:/aty) 

(ar;/at, at:/aty 

whose eigenvalues and eigenvectors at each one of those fixed points are associated 
with relevant critical quantities. Let us note that it is by no means necessary (or 
even eventually convenient) to perform the renormalisation in a two-dimensional 
space (tx - t,, space in our case) and wider spaces can be used. 

Let us now translate the restrictions (i)-(vii) into RG language. 
(i’) An anomaly must appear, at 4 = 4, in the topology of the flow diagram while 

4 varies; by anomaly we refer for instance to a bifurcation, terminal or turning point 
in the path of the relevant fixed points. However, it is not obvious that such anomaly 
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can be observed without an enlargement of the renormalisation space (see, for example, 
Nienhuis et a1 1979, Riedel 1981). 

(ii’) It must be 

This restriction leads to the invariance of the flow diagram through tx t, t, permutation, 
i.e. there is a mirror symmetry with respect to the isotropic t x = t y  axis. The most 
satisfactory way of obtaining relation (9) is to use cells which themselves preserve the 
equivalence between the ‘horizontal’ and ‘vertical’ directions. 

(iii’) It must be 

where the superscript D denotes transformation (3) (see also Tsallis 1981, Tsallis 
and Levy 1981). The most satisfactory way for obtaining relation (10) is to use 
self-dual cells (a cell is said to be self-dual if it can be superimposed to itself in such 
a way that each one of its bonds is cut by one, and only one, bond of the original 
cell). The exact critical frontier (equation (3)) must be recovered as a flow line which 
runs between the one-dimensional limit points. 

(iv’) A semi-stable fixed point must exist on the critical line in between the twb 
one-dimensional limits, i.e. the eigenvalue (of the Jacobian matrix (8)), denoted A2, 
associated with the eigenvector tangential to the critical line must be less than one 
(the other eigenvalue, denoted A I ,  clearly must be greater than one). 

(v’) At both one-dimensional limits, unstable fixed points must exist, and the 
associated Jacobian matrix must be proportional to unity (A, = A y  = A ) ,  at least in the 
limit b + W. 

(vi’) The eigenvalue A must be proportional to b in the limit b + 00 (we recall that 
v(d = 1) = limb,,(ln b/ln A)). 

(vii‘) The eigenvalue A I  must be such that Y = limb,,(ln b/ln A I )  agrees with the 
possibly exact result (equation (5)) .  

Let us now place in the preceding context the recent RG literature on the subject. 
To the best of our knowledge, the unique RG treatment of the anisotropic q-state 
Potts model which is available is that performed by Kadanoff (1976). Within this 
approach only restrictions (ii‘) and (iii’) are satisfied. In what concerns the isotropic 
model (t, = t y ) ,  only restrictions (i‘), (iii‘) and (vii’) are to be considered. Nienhuis et 
al (1979) qualitatively (but not quantitatively) satisfy these three restrictions. Blote 
et a1 (1981) do not satisfy (i’) nor calculate the critical point (restriction (iii’)), but 
obtain, for q < 4, a quite precise numerical approximation for Y (restriction (vii’)). 
Tsallis a_nd Levy (1981) do not satisfy (i’), but obtain the exact critical point (f,= 
1/(1+ Jq)), and acceptable numerical approximations for Y (q c 4). 

In what concerns the anisotropic system, some effort has been dedicated to the 
bond percolation problem (which corresponds to the particular case q + 1, according 
to Kasteleyn and Fortuin (1969)). In this case, restriction (i’) need not be considered. 
In what concerns restrictions ($)-(vi?), Ikeda (1979) satisfies none of them, and 
Chaves et al (1979) and de MagalhIes et a1 (1981) only satisfy (ii’) and (iii’), and 
obtain acceptable numerical approximations for v (restriction (vii’)). Nakanishi et a1 
(1981) only satisfy (ii’), (iv‘), (v’) and (vi’); it must, however, be pointed out that they 
satisfy restriction (ii’) through an ad hoc procedure and not by considering a single 
cell whose ‘horizontal’ and ‘vertical’ spannings determine the corresponding recursive 
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relations (equation (6)). Oliveira (1982) uses a suitable family of cells (Riera et a1 
1980, de Magalhles et a1 1981, Curado et a1 1981, Oliveira 1981, see figure 1) and 
simultaneously satisfies restrictions (ii’)-(vi’); the exact critical frontier t, + t, = 1 is 
obtained because, besides the fact that restrictions (ii’) and (iii’) are satisfied, each cell 
of this family reduces to a single linear chain in the one-dimensional limits (this 
important property is not satisfied by the cells used by Chaves et al (1979) and de 
Magalhiies et al (1981); at the terminals of these cells different linear chains are being 
mixed). 

In the present paper we follow along the lines of Oliveira (1982) and, by formulating 
the problem in terms of the transmissivities already mentioned, extend the RG treat- 
ment to the Potts model. By doing so, we satisfy restrictions @’)-(vi’) for all q and 
obtain a qualitatively acceptable q dependence of Y (restriction (vi?)); we fail, however, 
in what concerns restriction (i’). 

2. Real space renormalisation group treatment 

We shall use the family of self-dual cells indicated in figure 1. By using the break- 
collapse method (BCM; Tsallis and Levy 1981) we calculate the recursive relation 
(equation (6)) which renormalises the b = 2 cell (figure l(c)) into the b = 1 cell (figure 
l(a)) (we remark that a single pair of cells provides both tx- and t,-recurrences: it is 
enough to appropriately choose the input and output points, as illustratcd, for b = 1, 
in figures l(a) and (b)) and obtain 

t: = R 2 ( t x ,  t Y )  t: = . R Z ( f y ,  t x )  (1 1) 

with 

~ ~ ( t ~ ,  t Y )  = [ t :  + 4tZty + 3txt: + 2(q - 2)t,3t, +4(q - 2)t;t; + 2(q - 2)t:ty 
+(q2f2q-5)t2t: +(4q-6)t;t; +(4q2-13q+ 10)t:t; 

+(6q2 - 184 + 12)t;t; + (4 - 2)t;t; + (q2 - 5q +6)t:t: 

+ (2q3 -6q2 + l0)t;r: + (3q2 - 13q + 14)t;t; 

+(2q3-12q2+26q-20)tIt: +(3q3- 18q2+38q-28)t:t: 

+(q4-7q3+21q2-30q+17)t:t:]/[l+2(q-l)txt, 

+2(q  - l)& + (4’- 1)tfr; + (2q2 - 6q i.4)t:t: 

+(2q3-4q2-2q +4)t:r: +(3q2-9q+6)t2tlf 

+ (2q’ - 3q + 1)t:t: +2q(q - 1)t:t; + (4 - 1)t;t: + (q2 - 34 + 2)t;t; 

+(2q3-10q2+16q-8)t:t: +(3q3- 15q2+24q-12)t:t: 

+ (q4 - 7q3  + 18qz - 20q + 8)t,”t:]. (12) 

This recursive relation (which, for q = 1, recovers that of Oliveira (1982)) presents 
two trivial stable fixed points (namely (t:, t ; )  = (0,O) and (t:, t:) = (1, l)), two one- 
dimensional unstable fixed points (namely (1,jI) and (0, 1)) and one isotropic semi- 
stable fixed point (namely (tc, t,) with re= (Jq+ l)-’ which is the exact value), see 
figure 2. As a matter of fact the same set of fixed points will be obtained for all values 
of b. 
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I 

I 

t t  

t t t  

Figure 1. Self-dual cells and their two-rooted graph representation; all the entrances and 
all the exits of the cell, indicated by arrows, are to be respectively collapsed in order to 
generate the two roots or terminal sites (0) of the associated graph (see also Oliveira er 
a1 1980); the internal sites of the cell become, without any modification, the internal sites 
(0) of the graph. These graphs provide Rl(rx, r,) = &(a) ,  Rl(f , ,  t,) = rJb), R&, r,) ( c )  
and R3(f,, t,) ( d )  (we recall that the summation is carried out only over the internal sites 
of the graph). 

Let us first analyse the isotropic fixed point. The Jacobian matrix (8) associated 
with equations (11) and (12) presents an eigenvalue (bigger than unity for any finite 

hl(b =2)=(2025+l l  160Jq+26580q+35 792q3l2+29852q2+ 15 816q5/2 
4 )  

+ 5207q3 + 976q7/2 + 80q4)/(2025 + 8820dq+ 16 8044 + 18 29Oq3I2 

+ 12 444q2+5424q5/’+ 1481q3+232q7/2+ 16q4) (13) 
associated with the eigenvector (1,1)/& (which, in fact, will be the same for all 
values of b), and an eigenvalue (less than unity for any finite 4) 

hz(b=2)=(10 125+88650Jq+342860q+781 853q3/2+1 178008q2 

f 1 240 724q5/2 + 939 667q3 + 5 16 9O6q7I2 + 205 408q4 
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+57 611q9’2+ 10 844q5+ 1232q””+64q6)/(91 125+595 3 5 0 4  

+ 1 782 5404 + 3 234 167q312 + 3 960 600q2 + 3 449 388q512 

+ 2  191 343q3+ 1023 534q7f2+349008q4+84 773q9I2 

+ 13 932q5+ 1392q1”’+64q6) 

0 1 0 1 
f, +, 

Figure 2. Flow diagrams associated with equation (11). The dots (full curve) represent(s) 
fixed points (the critical flow line; it coincides with the exact result r, = t p  (equation (3))). 
(P)((F)) denotes the paramagnetic (ferromagnetic) phase. (a) Complete b = 2 flow 
diagram for q = 2;  ( b )  critical Row lines associated with various values of q and any value 
of b (the limit q -* 0 corresponds to tree-like percolation; the q- and q-’-frontiers are, 
for all values of q, symmetric with respect to the straight line tx +I ,  = 1). 

I 

b = 3  

U 
0 1 2 3 4 

9 

Figure 3, q dependence of the correlation length critical exponent v ;  the full (broken) 
curves correspond to the present RG results (to the den Nijs (1979) conjecture). By b = $ 
we mean the value obtained by renormalising the b = 3 cell into the 6 = 2 one, hence 
v ( b  =$)=(In $)/ln[(hl(b = 3))/(hl(b = 2))]. 
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associated with the eigenvector (-1, 1)/& (the same for all values of b). The fact that 
A z  < 1 enables restriction (iv’) to be satisfied. The q dependence of the approximate 
critical exponent v(b = 2) =In 2/ln Al(b = 2) is presented in figure 3 and table 1. It 
is clear that A l(b = 2) could have been obtained directly from the isotropic case 
(tx = t, = t) whose recursive relation is given by 

t’ = Rz(t, t )  = [8 t3+6(q  -2)t4+ (q2+8q - 15)tS+(10q2-30q +20)t6 

+ (2q - 2q - 18q + 30)t’ + (5q3 - 30q2 + 64q - 48)t’ + (q4 - 7q + 2 14’ 

-3Oq + 17)t9]/[1 +2(q-l)t2+(q2+2q-3)t4+(2q2-6q+4)t5 

+4q(q - l)t6+(2q3-14q+12)t’+(5q3-25q2+40q -20)t’ 

+ (q4 -7q3 + 18q2-20q +8)t9] (15) 

hence 

v(b = 2) =In 2/ln(dR2(t, t)/dt),-l/~Jq+l) = In  2/ln  AI(^ = 2), 

For b = 3 we have calculated (by using the BCM) the isotropic case and have obtained 

where the integer coefficients { n j i ) }  and {d ; i ) }  are presented in table 2. From this 
expression we straightforwardly obtain 

where the coefficients {a;} and (pi} are presented in table 3. The associated critical 
exponent v(b = 3) =In 3/ln A I @  = 3) is presented in figure 3 and table 1. 

Let us now turn our attention onto the one-dimensional fixed points. The Jacobian 
matrix (8) associated with equations (11) and (12) is degenerate (i.e. proportional to 
the unity matrix) therefore the dimensionality crossover exponent q5 equals one, which 
is the exact result. The degenerate eigenvalue is A (b = 2) = 3 (bigger than unity as 

Table 3. Coefficients of the numerator ({a,}) and denominator ({p,}) of Al(b  = 3) (equation 
(17)). 

i a, P, 1 ffl PI 

0 26 609 765 625 26609765625 12 37326398614887 8730873263387 
1 345 165 975 000 301 151 587 500 13 18 238 527 887 576 3 830 174 165 004 
2 2 136 160 842 300 1 632 004 524 900 14 7 595 924 956 680 1 434 397 590 136 
3 8398260105840 5637003575850 15 2689378468288 457379903606 
4 23558927138490 13935002902530 16 805456074350 123565884406 
5 50208537095364 26244158374710 17 202466608404 28 065 470 706 
6 84507606761853 39134969393899 18 42 226 821 982 5 298 478 858 
7 115 275 290 061 296 47 406 621 773 750 19 7186504632 817 846 452 
8 129749686604187 47487604806763 20 973 987 016 100 745 336 
9 122049367890464 39833254423768 21 101 289 672 9 544 940 

10 96 809 133 215 685 28 227 060 346 311 22 7 605 120 654 600 
11 65144830142464 16998851657994 23 367 800 29 000 

23 8 625 625 
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expected). As a matter of fact, for any value of b, the recursive relation in the vicinity 
of a one-dimensional fixed point (let us say (t:, t;) = (1,O)) leads to an eigenvalue 
A (b) which is that of a linear chain (along the x direction in our case). The recurrence 
is given by 

f: =Rb(tx, o)= f:b-’ (18) 

hence 

and finally 

In b In b v ( d  = 1) = lim -- - lim 
b- In A(b) h a  ln(2b - 1)= 

which is the exact result. 

3. The s variable 

In order to make a remark let us introduce a new variable (Tsallis 1981, Tsallis and 
de Magalhtes 1981) namely 

It is straightforward through the use of 

to verify that 

sD(tr)=s(tP)= 1 - s ( t 7 )  r = x ,  y 

and that the critical frontier (3) can be rewritten in a universal form (the same for 
all values of q )  namely 

s, +s, = 1 (23) 

which is precisely that of bond percolation (q -* 1). Consequently we can define the 
RG in an alternative manner, namely 

The flow diagram presents, for all values o f q ,  one and the same set of fixed points 
(namely (s:, s;) = (0, 0), (1, l), (LO), (0, 1) and (2, f)) and critical flow line (namely 
that of equation (23)), i.e. it presents the RG topology of the bond percolation problem. 



2876 P M C Oliveira and C Tsallis 

In what concerns the critical exponents nothing is changed with respect to the RG in 
the t variables as, for any fixed point, we have 

4. Conclusion 

The use of appropriate cells (which are self-dual and in the one-dimensional limits 
reduce to single chains) enables us to reproduce, within a simple real space renormalisa- 
tion group, a considerable quantity of exact results (points (ii)-(vi) of § 1) concerning 
the criticality of the anisotropic square lattice q-state Potts model. In what concerns 
the q dependence of the correlation length critical exponent v (point (vii) of § 1) we 
obtain results which are compatible with the den Nijs (1979) conjecture and which 
improve with increasing cell size as long as q is not too close to 4; on the whole they 
are quite similar to those obtained by Tsallis and Levy (1981) and reinforce the den 
Nijs (19-79) conjecture in the limit q + 0 (tree-like percolation) as they all provide 
v CC 1f Jq. In what concerns point (i) of # 1 we have failed, i.e. nothing special occurs 
at q = 4 (nor at any other finite value of q ) ;  the fact that we have not enlarged the 
parameter space (our renormalisation is restricted to the (tx, t Y )  space) is, according 
to the ideas contained in Nienhuis et a1 (1979), quite probably at the origin of this 
failure . 

It is interesting to compare the present results with those of Kadanoff (1976) for 
the same system. Kadanoff discusses the ‘troubles with the approximation’ he intro- 
duces, namely: (1) the d = 2 to d = 1 crossover is completely missed; (2) a considerable 
inaccuracy in the determination of the value for v is found; (3) the procedure leads 
to /? f v = 0 (which, for d = 2, implies that the spin-spin correlation function critical 
exponent 7 vanishes). Difficulties (1) and (2) are absent from the present treatment; 
difficulty (3) is out of the scope of this work as we calculate neither a magnetic-type 
critical exponent nor quantities directly related to it (let us say, however, that this 
difficulty can be avoided by using procedures like those recently introduced by Martin 
and Tsallis (1981a, b); these procedures extend the present one which is recovered 
as one of its stages). 

Incidentally we present (in § 3) a renormalisation group (constructed in the (s,, s,) 
space instead of the (t,, t,) one) which has interesting universal properties: the set of 
fixed points and critical flow line (critical frontier) is independent of q and is that of 
bond percolation. 
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