Anisotropic square lattice Potts ferromagnet: renormalisation group treatment

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 152865
(http://iopscience.iop.org/0305-4470/15/9/035)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:10

Please note that terms and conditions apply.

Anisotropic square lattice Potts ferromagnet: renormalisation group treatment

Paulo Murilo Castro de Oliveira \dagger and Constantino Tsallis \ddagger
\dagger Departamento de Física, Universidade Federal Fluminense, CP 296-24000, Niterói, RJ Brazil
\ddagger Centro Brasileiro de Pesquisas Físicas/CNPq, Rua Xavier Sigaud 150-22290, Rio de Janeiro, Brazil

Received 26 November 1981, in final form 28 April 1982

Abstract

The choice of a convenient self-dual cell within a real space renormalisation group framework enables a satisfactory treatment of the anisotropic square lattice q-state Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover exponent ϕ as well as the expected universality behaviour (renormalisation flow sense) are recovered for any linear scaling factor b and all values of $q(q \leqslant 4)$. The $b=2$ and $b=3$ approximate correlation length critical exponent ν is calculated for all values of q and compared with the den Nijs conjecture. The same calculation is performed, for all values of b, for the exponent $\nu(d=1)$ associated with the one-dimensional limit and the exact result $\nu(d=1)=1$ is recovered in the limit $b \rightarrow \infty$.

1. Introduction

During recent years considerable effort has been dedicated to the construction of real space renormalisation group (RG) frameworks suitable for the treatment of several models like the site and bond percolation, Ising and q-state Potts ones. A particular case which has frequently been focused upon is the anisotropic square lattice q-state Potts ferromagnet whose Hamiltonian is given by

$$
\begin{equation*}
\mathscr{H}=-q \sum_{\langle i, j\rangle} J_{i j} \delta_{\sigma_{i} \sigma_{j}} \quad \sigma_{i}=1,2, \ldots, q \forall i \tag{1}
\end{equation*}
$$

where $J_{i j}=J_{x} \geqslant 0\left(J_{i j}=J_{y} \geqslant 0\right)$ if sites i and j are 'horizontal' ('vertical') first neighbours (as a matter of fact, the present paper remains practically unchanged in the case where one or both coupling constants are negative). Any satisfactory RG proposal for this problem should recover the following facts.
(i) The transition is continuous (first order) if $0 \leqslant q \leqslant 4(q>4)$ according to Baxter (1973), Straley and Fisher (1973), and Kim and Joseph (1975).
(ii) All properties of the system are invariant through $x \leftrightarrow y$ permutation.
(iii) The anisotropic square lattice is self-dual, therefore the dual transformation (Kim and Joseph 1975, Burkhardt and Southern 1978, Baxter et al 1978)

$$
\begin{equation*}
\exp \left(-q J_{x} / k_{\mathrm{B}} T\right) \leftrightarrow \frac{1-\exp \left(-q J_{y} / k_{\mathrm{B}} T\right)}{1+(q-1) \exp \left(-q J_{\mathrm{y}} / k_{\mathrm{B}} T\right)} \tag{2}
\end{equation*}
$$

interchanges its para- and ferromagnetic phases, and consequently the critical frontier
is given by

$$
\begin{equation*}
t_{x}=t_{y}^{\mathrm{D}} \equiv \frac{1-t_{y}}{1+(q-1) t_{y}} \tag{3}
\end{equation*}
$$

where we have introduced convenient variables (hereafter referred to as transmissivities (see Tsallis 1981, Tsallis and Levy 1981, and references therein), through

$$
\begin{equation*}
t_{r} \equiv \frac{1-\exp \left(-q J_{r} / k_{\mathrm{B}} T\right)}{1+(q-1) \exp \left(-q J_{r} / k_{\mathrm{B}} T\right)} \quad r=x, y \tag{4}
\end{equation*}
$$

(iv) The system is universal, i.e. its critical behaviour for fixed q is one and the same for all non-vanishing values of J_{x} and J_{y} (in particular, the correlation length critical exponent ν is the same along the critical frontier excepted both one-dimensional limits $J_{x}=0$ or $J_{y}=0$).
(v) The crossover exponent ϕ associated with the one-dimensional limits equals one; this fact means that if we consider, for instance, the limit $J_{y} / J_{x} \rightarrow 0$, the critical frontier satisfies $t_{y} \propto 1-t_{x}$. It is clear that this weak restriction is satisfied by equation (3) which implies $t_{y} \sim\left(1-t_{x}\right) / q$.
(vi) The correlation length critical exponent $\nu(d=1)$ associated with the onedimensional limits equals one.
(vii) The q dependence of the critical exponent ν (for $J_{x}, J_{y} \neq 0$) has not yet been rigorously established, however, the den Nijs (1979) conjecture, namely

$$
\begin{align*}
\nu & =\frac{2}{3\left[2+\pi /\left(\cos ^{-1} \sqrt{q} / 2-\pi\right)\right]} \tag{5}\\
& \sim \pi / 3 \sqrt{q} \quad \text { for } q \rightarrow 0
\end{align*}
$$

is possibly exact.
An rg treatment of the present problem consists in the construction of a twodimensional recursive relation (generated by the renormalisation of an appropriate cell into a smaller one) which we shall denote

$$
\begin{equation*}
t_{x}^{\prime}=R_{b}^{x}\left(t_{x}, t_{y}\right) \quad t_{y}^{\prime}=R_{b}^{y}\left(t_{x}, t_{y}\right) \tag{6}
\end{equation*}
$$

where $b>1$ is the linear scaling factor. This recursive relation is expected to provide fixed points $\left(t_{x}^{*}, t_{y}^{*}\right)$ which satisfy

$$
\begin{equation*}
t_{x}^{*}=R_{b}^{x}\left(t_{x}^{*}, t_{y}^{*}\right) \quad t_{y}^{*}=R_{b}^{y}\left(t_{x}^{*}, t_{y}^{*}\right) \tag{7}
\end{equation*}
$$

as well as a Jacobian matrix

$$
\left(\begin{array}{ll}
\partial t_{x}^{\prime} / \partial t_{x} & \partial t_{x}^{\prime} / \partial t_{y} \tag{8}\\
\partial t_{y}^{\prime} / \partial t_{x} & \partial t_{y}^{\prime} / \partial t_{y}
\end{array}\right)
$$

whose eigenvalues and eigenvectors at each one of those fixed points are associated with relevant critical quantities. Let us note that it is by no means necessary (or even eventually convenient) to perform the renormalisation in a two-dimensional space ($t_{x}-t_{y}$ space in our case) and wider spaces can be used.

Let us now translate the restrictions (i)-(vii) into RG language.
(i') An anomaly must appear, at $q=4$, in the topology of the flow diagram while q varies; by anomaly we refer for instance to a bifurcation, terminal or turning point in the path of the relevant fixed points. However, it is not obvious that such anomaly
can be observed without an enlargement of the renormalisation space (see, for example, Nienhuis et al 1979, Riedel 1981).
(ii') It must be

$$
\begin{equation*}
R_{b}^{y}(y, x)=R_{b}^{x}(x, y) \equiv R_{b}(x, y) . \tag{9}
\end{equation*}
$$

This restriction leads to the invariance of the flow diagram through $t_{x} \leftrightarrow t_{y}$ permutation, i.e. there is a mirror symmetry with respect to the isotropic $t_{x}=t_{y}$ axis. The most satisfactory way of obtaining relation (9) is to use cells which themselves preserve the equivalence between the 'horizontal' and 'vertical' directions.
(iii') It must be

$$
\begin{equation*}
R_{b}^{x}(x, y)=\left[R_{b}^{y}\left(y^{\mathrm{D}}, x^{\mathrm{D}}\right)\right]^{\mathrm{D}} \equiv \frac{1-R_{b}^{y}\left(y^{\mathrm{D}}, x^{\mathrm{D}}\right)}{1+(q-1) R_{b}^{y}\left(y^{\mathrm{D}}, x^{\mathrm{D}}\right)} \tag{10}
\end{equation*}
$$

where the superscript D denotes transformation (3) (see also Tsallis 1981, Tsallis and Levy 1981). The most satisfactory way for obtaining relation (10) is to use self-dual cells (a cell is said to be self-dual if it can be superimposed to itself in such a way that each one of its bonds is cut by one, and only one, bond of the original cell). The exact critical frontier (equation (3)) must be recovered as a flow line which runs between the one-dimensional limit points.
(iv') A semi-stable fixed point must exist on the critical line in between the two one-dimensional limits, i.e. the eigenvalue (of the Jacobian matrix (8)), denoted λ_{2}, associated with the eigenvector tangential to the critical line must be less than one (the other eigenvalue, denoted λ_{1}, clearly must be greater than one).
(v^{\prime}) At both one-dimensional limits, unstable fixed points must exist, and the associated Jacobian matrix must be proportional to unity ($\lambda_{x}=\lambda_{y} \equiv \lambda$), at least in the limit $b \rightarrow \infty$.
(vi') The eigenvalue λ must be proportional to b in the limit $b \rightarrow \infty$ (we recall that $\left.\nu(d=1)=\lim _{b \rightarrow \infty}(\ln b / \ln \lambda)\right)$.
(vii') The eigenvalue λ_{1} must be such that $\nu=\lim _{b \rightarrow \infty}\left(\ln b / \ln \lambda_{1}\right)$ agrees with the possibly exact result (equation (5)).

Let us now place in the preceding context the recent RG literature on the subject. To the best of our knowledge, the unique RG treatment of the anisotropic q-state Potts model which is available is that performed by Kadanoff (1976). Within this approach only restrictions (ii') and (iii') are satisfied. In what concerns the isotropic model ($t_{x}=t_{y}$), only restrictions (i^{\prime}), (iii') and (vii') are to be considered. Nienhuis et al (1979) qualitatively (but not quantitatively) satisfy these three restrictions. Blöte et al (1981) do not satisfy (i') nor calculate the critical point (restriction (iii')), but obtain, for $q<4$, a quite precise numerical approximation for ν (restriction (vii')). Tsallis and Levy (1981) do not satisfy (i^{\prime}), but obtain the exact critical point ($t_{\mathrm{c}}=$ $1 /(1+\sqrt{q})$, and acceptable numerical approximations for $\nu(q<4)$.

In what concerns the anisotropic system, some effort has been dedicated to the bond percolation problem (which corresponds to the particular case $q \rightarrow 1$, according to Kasteleyn and Fortuin (1969)). In this case, restriction (i') need not be considered. In what concerns restrictions (ii')-(vii'), Ikeda (1979) satisfies none of them, and Chaves et al (1979) and de Magalhães et al (1981) only satisfy (ii') and (iii'), and obtain acceptable numerical approximations for ν (restriction (vii')). Nakanishi et al (1981) only satisfy (ii'), (iv^{\prime}), (v^{\prime}) and (vi^{\prime}); it must, however, be pointed out that they satisfy restriction (ii') through an ad hoc procedure and not by considering a single cell whose 'horizontal' and 'vertical' spannings determine the corresponding recursive
relations (equation (6)). Oliveira (1982) uses a suitable family of cells (Riera et al 1980, de Magalhães et al 1981, Curado et al 1981, Oliveira 1981, see figure 1) and simultaneously satisfies restrictions (ii')-(vi'); the exact critical frontier $t_{x}+t_{y}=1$ is obtained because, besides the fact that restrictions (ii') and (iii') are satisfied, each cell of this family reduces to a single linear chain in the one-dimensional limits (this important property is not satisfied by the cells used by Chaves et al (1979) and de Magalhães et al (1981); at the terminals of these cells different linear chains are being mixed).

In the present paper we follow along the lines of Oliveira (1982) and, by formulating the problem in terms of the transmissivities already mentioned, extend the rG treatment to the Potts model. By doing so, we satisfy restrictions (ii')-(vi') for all q and obtain a qualitatively acceptable q dependence of ν (restriction (vii')); we fail, however, in what concerns restriction (i^{\prime}).

2. Real space renormalisation group treatment

We shall use the family of self-dual cells indicated in figure 1. By using the breakcollapse method (BCM ; Tsallis and Levy 1981) we calculate the recursive relation (equation (6)) which renormalises the $b=2$ cell (figure $1(c)$) into the $b=1$ cell (figure $1(a)$) (we remark that a single pair of cells provides both $t_{x}-$ and t_{y}-recurrences: it is enough to appropriately choose the input and output points, as illustrated, for $b=1$, in figures $1(a)$ and (b)) and obtain

$$
\begin{equation*}
t_{x}^{\prime}=R_{2}\left(t_{x}, t_{y}\right) \quad t_{y}^{\prime}=R_{2}\left(t_{y}, t_{x}\right) \tag{11}
\end{equation*}
$$

with

$$
\begin{align*}
R_{2}\left(t_{x}, t_{y}\right) \equiv\left[t_{x}^{3}\right. & +4 t_{x}^{2} t_{y}+3 t_{x} t_{y}^{2}+2(q-2) t_{x}^{3} t_{y}+4(q-2) t_{x}^{2} t_{y}^{2}+2(q-2) t_{x}^{4} t_{y} \\
& +\left(q^{2}+2 q-5\right) t_{x}^{3} t_{y}^{2}+(4 q-6) t_{x}^{2} t_{y}^{3}+\left(4 q^{2}-13 q+10\right) t_{x}^{4} t_{y}^{2} \\
& +\left(6 q^{2}-18 q+12\right) t_{x}^{3} t_{y}^{3}+(q-2) t_{x}^{2} t_{y}^{4}+\left(q^{2}-5 q+6\right) t_{x}^{5} t_{y}^{2} \\
& +\left(2 q^{3}-6 q^{2}+10\right) t_{x}^{4} t_{y}^{3}+\left(3 q^{2}-13 q+14\right) t_{x}^{3} t_{y}^{4} \\
& +\left(2 q^{3}-12 q^{2}+26 q-20\right) t_{x}^{5} t_{y}^{3}+\left(3 q^{3}-18 q^{2}+38 q-28\right) t_{x}^{4} t_{y}^{4} \\
& \left.+\left(q^{4}-7 q^{3}+21 q^{2}-30 q+17\right) t_{x}^{5} t_{y}^{4}\right] /\left[1+2(q-1) t_{x} t_{y}\right. \\
& +2(q-1) t_{x}^{3} t_{y}+\left(q^{2}-1\right) t_{x}^{2} t_{y}^{2}+\left(2 q^{2}-6 q+4\right) t_{x}^{3} t_{y}^{2} \\
& +\left(2 q^{2}-3 q+1\right) t_{x}^{4} t_{y}^{2}+2 q(q-1) t_{x}^{3} t_{y}^{3}+(q-1) t_{x}^{2} t_{y}^{4}+\left(q^{2}-3 q+2\right) t_{x}^{5} t_{y}^{2} \\
& +\left(2 q^{3}-4 q^{2}-2 q+4\right) t_{x}^{4} t_{y}^{3}+\left(3 q^{2}-9 q+6\right) t_{x}^{3} t_{y}^{4} \\
& +\left(2 q^{3}-10 q^{2}+16 q-8\right) t_{x}^{5} t_{y}^{3}+\left(3 q^{3}-15 q^{2}+24 q-12\right) t_{x}^{4} t_{y}^{4} \\
& \left.+\left(q^{4}-7 q^{3}+18 q^{2}-20 q+8\right) t_{x}^{5} t_{y}^{4}\right] . \tag{12}
\end{align*}
$$

This recursive relation (which, for $q=1$, recovers that of Oliveira (1982)) presents two trivial stable fixed points (namely $\left(t_{x}^{*}, t_{y}^{*}\right)=(0,0)$ and $\left(t_{x}^{*}, t_{y}^{*}\right)=(1,1)$), two onedimensional unstable fixed points (namely (1,0) and (0,1)) and one isotropic semistable fixed point (namely $\left(t_{c}, t_{c}\right)$ with $t_{c} \equiv(\sqrt{q}+1)^{-1}$ which is the exact value), see figure 2. As a matter of fact the same set of fixed points will be obtained for all values of b.

Figure 1. Self-dual cells and their two-rooted graph representation; all the entrances and all the exits of the cell, indicated by arrows, are to be respectively collapsed in order to generate the two roots or terminal sites (O) of the associated graph (see also Oliveira et al 1980); the internal sites of the cell become, without any modification, the internal sites () of the graph. These graphs provide $R_{1}\left(t_{x}, t_{y}\right)=t_{x}(a), R_{1}\left(t_{y}, t_{x}\right)=t_{y}(b), R_{2}\left(t_{x}, t_{y}\right)$ (c) and $R_{3}\left(t_{x}, t_{y}\right)(d)$ (we recall that the summation is carried out only over the internal sites of the graph).

Let us first analyse the isotropic fixed point. The Jacobian matrix (8) associated with equations (11) and (12) presents an eigenvalue (bigger than unity for any finite q)

$$
\begin{align*}
\lambda_{1}(b=2)=(& 2025+11160 \sqrt{q}+26580 q+35792 q^{3 / 2}+29852 q^{2}+15816 q^{5 / 2} \\
& \left.+5207 q^{3}+976 q^{7 / 2}+80 q^{4}\right) /\left(2025+8820 \sqrt{q}+16804 q+18290 q^{3 / 2}\right. \\
& \left.+12444 q^{2}+5424 q^{5 / 2}+1481 q^{3}+232 q^{7 / 2}+16 q^{4}\right) \tag{13}
\end{align*}
$$

associated with the eigenvector $(1,1) / \sqrt{2}$ (which, in fact, will be the same for all values of b), and an eigenvalue (less than unity for any finite q)

$$
\begin{aligned}
\lambda_{2}(b=2)= & 10125+88650 \sqrt{q}+342860 q+781853 q^{3 / 2}+1178008 q^{2} \\
& +1240724 q^{5 / 2}+939667 q^{3}+516906 q^{7 / 2}+205408 q^{4}
\end{aligned}
$$

$$
\begin{align*}
& \left.+57611 q^{9 / 2}+10844 q^{5}+1232 q^{11 / 2}+64 q^{6}\right) /(91125+595350 \sqrt{q} \\
& +1782540 q+3234167 q^{3 / 2}+3960600 q^{2}+3449388 q^{5 / 2} \\
& +2191343 q^{3}+1023534 q^{7 / 2}+349008 q^{4}+84773 q^{9 / 2} \\
& \left.+13932 q^{5}+1392 q^{11 / 2}+64 q^{6}\right) \tag{14}
\end{align*}
$$

Figure 2. Flow diagrams associated with equation (11). The dots (full curve) represent(s) fixed points (the critical flow line; it coincides with the exact result $t_{x}=t_{y}^{\mathrm{D}}$ (equation (3))). $(P)((F))$ denotes the paramagnetic (ferromagnetic) phase. (a) Complete $b=2$ flow diagram for $q=2 ;(b)$ critical flow lines associated with various values of q and any value of b (the limit $q \rightarrow 0$ corresponds to tree-like percolation; the q - and q^{-1}-frontiers are, for all values of q, symmetric with respect to the straight line $t_{x}+t_{y}=1$).

Figure 3. q dependence of the correlation length critical exponent ν; the full (broken) curves correspond to the present RG results (to the den Nijs (1979) conjecture). By $b=\frac{3}{2}$ we mean the value obtained by renormalising the $b=3$ cell into the $b=2$ one, hence $\nu\left(b=\frac{3}{2}\right)=\left(\ln \frac{3}{2}\right) / \ln \left[\left(\lambda_{1}(b=3)\right) /\left(\lambda_{1}(b=2)\right)\right]$.
Table 1. RG and conjectural values of the critical exponent ν. (a) See caption of figure 3; (b) these values coincide with those appearing in Oliveira (1982).

	$q \rightarrow 0$	$q=1$		$q=2$	$q=3$	$q=4$
	$45 \ln 2 \frac{1}{5}$	In 2		$\ln 2$	$\ln 2$	$\ln 2$
	$52 \sqrt{\text { a }}$	$\ln \frac{249}{}$		$\ln \frac{29}{13}$	$\underline{\ln 22917+47872 \sqrt{3}}$	$\ln \frac{2193}{857}$
$b=2$	$\simeq 0.600 / \sqrt{q}$	$\begin{aligned} & 2^{7} \\ & =1.042 \end{aligned}$	(b)	≈ 0.864	$\begin{aligned} & 34286+19795 \sqrt{3} \\ & =0.785 \end{aligned}$	$=0.738$
	$3625 \ln 31$	$\ln 3$		$\ln 3$	$\ln 3$	$\ln 3$
$b=3$	$5996 \sqrt{\text { q }}$	$\ln \frac{5700575}{2^{21}}$		$\ln 3.3921$	$\ln 3.8777$	$\ln 4.2643$
	$\approx 0.664 / \sqrt{q}$	≈ 1.099	(b)	≈ 0.899	≈ 0.811	$\simeq 0.758$
	$32625 \ln (3 / 2) 1$	$\ln (3 / 2)$		$\ln (3 / 2)$	$\ln (3 / 2)$	$\ln (3 / 2)$
	$16264 \sqrt{\text { q }}$	$\ln \frac{5700575}{249 x^{14}}$		$\underline{\ln 1.5206}$	ln 1.6034	$\ln 1.6664$
$b=3 / 2(a)$	$\approx 0.813 / \sqrt{q}$	249×2^{14} $=1.212$		$\simeq 0.967$	$\simeq 0.859$	$\simeq 0.794$
Conjecture (den Nijs 1979)	$\frac{\pi}{3} \frac{1}{\sqrt{q}}=1.047 / \sqrt{q}$	$\frac{4}{3} \simeq 1.333$		1	$\frac{5}{6} \simeq 0.833$	$\frac{2}{3}=0.667$

Table 2. Coefficients of the numerator ($\left\{n_{j}^{(1)}\right\}$; top value) and denominator $\left(\left\{d_{j}^{(t)}\right\}\right.$; bottom value) of $R_{3}(t, t)$ (equation (16)); all missing coefficients vanish.

associated with the eigenvector $(-1,1) / \sqrt{2}$ (the same for all values of b). The fact that $\lambda_{2}<1$ enables restriction (iv') to be satisfied. The q dependence of the approximate critical exponent $\nu(b=2)=\ln 2 / \ln \lambda_{1}(b=2)$ is presented in figure 3 and table 1 . It is clear that $\lambda_{1}(b=2)$ could have been obtained directly from the isotropic case ($t_{x}=t_{y} \equiv t$) whose recursive relation is given by

$$
\begin{align*}
t^{\prime}=R_{2}(t, t)= & {\left[8 t^{3}+6(q-2) t^{4}+\left(q^{2}+8 q-15\right) t^{5}+\left(10 q^{2}-30 q+20\right) t^{6}\right.} \\
& +\left(2 q^{3}-2 q^{2}-18 q+30\right) t^{7}+\left(5 q^{3}-30 q^{2}+64 q-48\right) t^{8}+\left(q^{4}-7 q^{3}+21 q^{2}\right. \\
& \left.-30 q+17) t^{9}\right] /\left[1+2(q-1) t^{2}+\left(q^{2}+2 q-3\right) t^{4}+\left(2 q^{2}-6 q+4\right) t^{5}\right. \\
& +4 q(q-1) t^{6}+\left(2 q^{3}-14 q+12\right) t^{7}+\left(5 q^{3}-25 q^{2}+40 q-20\right) t^{8} \\
& \left.+\left(q^{4}-7 q^{3}+18 q^{2}-20 q+8\right) t^{9}\right] \tag{15}
\end{align*}
$$

hence

$$
\nu(b=2)=\ln 2 / \ln \left(\mathrm{d} \boldsymbol{R}_{\mathbf{2}}(t, t) / \mathrm{d} t\right)_{t=1 /(\sqrt{ }+1)}=\ln 2 / \ln \lambda_{1}(b=2) .
$$

For $b=3$ we have calculated (by using the всм) the isotropic case and have obtained

$$
\begin{equation*}
t^{\prime}=R_{3}(t, t)=\frac{\sum_{i=5}^{25}\left(\sum_{j=0}^{12} n_{i}^{(i)} q^{12-j}\right) t^{i}}{1+4(q-1) t^{2}+\sum_{i=4}^{25}\left(\sum_{j=0}^{12} d_{j}^{(i)} q^{12-j}\right) t^{i}} \tag{16}
\end{equation*}
$$

where the integer coefficients $\left\{n_{j}^{(i)}\right\}$ and $\left\{d_{j}^{(i)}\right\}$ are presented in table 2. From this expression we straightforwardly obtain

$$
\begin{equation*}
\lambda_{1}(b=3)=\left.\frac{\mathrm{d} R_{3}(t, t)}{\mathrm{d} t}\right|_{t=1 /(\sqrt{ } q+1)}=\frac{\sum_{j=0}^{24} \alpha_{j} q^{j / 2}}{\sum_{j=0}^{24} \beta_{i} q^{j / 2}} \tag{17}
\end{equation*}
$$

where the coefficients $\left\{\alpha_{j}\right\}$ and $\left\{\beta_{j}\right\}$ are presented in table 3. The associated critical exponent $\nu(b=3)=\ln 3 / \ln \lambda_{1}(b=3)$ is presented in figure 3 and table 1.

Let us now turn our attention onto the one-dimensional fixed points. The Jacobian matrix (8) associated with equations (11) and (12) is degenerate (i.e. proportional to the unity matrix) therefore the dimensionality crossover exponent ϕ equals one, which is the exact result. The degenerate eigenvalue is $\lambda(b=2)=3$ (bigger than unity as

Table 3. Coefficients of the numerator $\left(\left\{\alpha_{j}\right\}\right)$ and denominator $\left(\left\{\beta_{j}\right\}\right)$ of $\lambda_{1}(b=3)$ (equation (17)).

j	α_{j}	β_{j}	α_{j}	β_{l}	
0	26609765625	26609765625	12	37326398614887	8730873263387
1	345165975000	301151587500	13	18238527887576	3830174165004
2	2136160842300	1632004524900	14	7595924956680	1434397590136
3	8398260105840	5637003575850	15	2689378468288	457379903606
4	23558927138490	13935002902530	16	805456074350	123565884406
5	50208537095364	26244158374710	17	202466608404	28065470706
6	84507606761853	39134969393899	18	42226821982	5298478858
7	115275290061296	47406621773750	19	7186504632	817846452
8	129749686604187	47487604806763	20	973987016	100745336
9	122049367890464	39833254423768	21	101289672	9544940
10	96809133215685	28227060346311	22	7605120	654600
11	65144830142464	16998851657994	23	367800	29000
			24	8625	625

expected). As a matter of fact, for any value of b, the recursive relation in the vicinity of a one-dimensional fixed point (let us say $\left(t_{x}^{*}, t_{y}^{*}\right)=(1,0)$) leads to an eigenvalue $\lambda(b)$ which is that of a linear chain (along the x direction in our case). The recurrence is given by

$$
\begin{equation*}
t_{x}^{\prime}=R_{b}\left(t_{x}, 0\right)=t_{x}^{2 b-1} \tag{18}
\end{equation*}
$$

hence

$$
\left.\lambda(b) \equiv \frac{\mathrm{d} R_{b}\left(t_{x}, 0\right)}{\mathrm{d} t_{x}}\right|_{t_{x}=1}=2 b-1
$$

and finally

$$
\begin{equation*}
\nu(d=1)=\lim _{b \rightarrow \infty} \frac{\ln b}{\ln \lambda(b)}=\lim _{b \rightarrow \infty} \frac{\ln b}{\ln (2 b-1)}=1 \tag{19}
\end{equation*}
$$

which is the exact result.

3. The s variable

In order to make a remark let us introduce a new variable (Tsallis 1981, Tsallis and de Magalhães 1981) namely

$$
\begin{equation*}
s_{r} \equiv s\left(t_{r}\right) \equiv \frac{\ln \left[1+(q-1) t_{r}\right]}{\ln q} \quad r=x, y . \tag{20}
\end{equation*}
$$

It is straightforward through the use of

$$
\begin{equation*}
t_{r}^{\mathrm{D}} \equiv \frac{1-t_{r}}{1+(q-1) t_{r}} \quad r=x, y \tag{21}
\end{equation*}
$$

to verify that

$$
\begin{equation*}
s^{\mathrm{D}}\left(t_{r}\right) \equiv s\left(t_{r}^{\mathrm{D}}\right)=1-s\left(t_{r}\right) \quad r=x, y \tag{22}
\end{equation*}
$$

and that the critical frontier (3) can be rewritten in a universal form (the same for all values of q) namely

$$
\begin{equation*}
s_{x}+s_{y}=1 \tag{23}
\end{equation*}
$$

which is precisely that of bond percolation $(q \rightarrow 1)$. Consequently we can define the RG in an alternative manner, namely

$$
\begin{align*}
& s_{x}^{\prime} \equiv s\left(t_{x}^{\prime}\right)=s\left(R_{b}\left(t_{x}, t_{y}\right)\right)=s\left(R_{b}\left(\frac{q^{s_{x}}-1}{q-1}, \frac{q^{s_{y}}-1}{q-1}\right)\right) \tag{24}\\
& s_{y}^{\prime} \equiv s\left(t_{y}^{\prime}\right)=s\left(R_{b}\left(t_{y}, t_{x}\right)\right)=s\left(R_{b}\left(\frac{q^{s_{y}}-1}{q-1}, \frac{q^{s_{x}}-1}{q-1}\right)\right)
\end{align*}
$$

The flow diagram presents, for all values of q, one and the same set of fixed points (namely $\left(s_{x}^{*}, s_{y}^{*}\right)=(0,0),(1,1),(1,0),(0,1)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$) and critical flow line (namely that of equation (23)), i.e. it presents the RG topology of the bond percolation problem.

In what concerns the critical exponents nothing is changed with respect to the RG in the t variables as, for any fixed point, we have

$$
\left(\begin{array}{ll}
\partial s_{x}^{\prime} / \partial s_{x} & \partial s_{x}^{\prime} / \partial s_{y} \tag{25}\\
\partial s_{y}^{\prime} / \partial s_{x} & \partial s_{y}^{\prime} / \partial s_{y}
\end{array}\right)=\left(\begin{array}{ll}
\partial t_{x}^{\prime} / \partial t_{x} & \partial t_{x}^{\prime} / \partial t_{y} \\
\partial t_{y}^{\prime} / \partial t_{x} & \partial t_{y}^{\prime} / \partial t_{y}
\end{array}\right) .
$$

4. Conclusion

The use of appropriate cells (which are self-dual and in the one-dimensional limits reduce to single chains) enables us to reproduce, within a simple real space renormalisation group, a considerable quantity of exact results (points (ii)-(vi) of § 1) concerning the criticality of the anisotropic square lattice q-state Potts model. In what concerns the q dependence of the correlation length critical exponent ν (point (vii) of $\S 1$) we obtain results which are compatible with the den Nijs (1979) conjecture and which improve with increasing cell size as long as q is not too close to 4 ; on the whole they are quite similar to those obtained by Tsallis and Levy (1981) and reinforce the den Nijs (1979) conjecture in the limit $q \rightarrow 0$ (tree-like percolation) as they all provide $\nu \propto 1 / \sqrt{q}$. In what concerns point (i) of $\S 1$ we have failed, i.e. nothing special occurs at $q=4$ (nor at any other finite value of q); the fact that we have not enlarged the parameter space (our renormalisation is restricted to the (t_{x}, t_{y}) space) is, according to the ideas contained in Nienhuis et al (1979), quite probably at the origin of this failure.

It is interesting to compare the present results with those of Kadanoff (1976) for the same system. Kadanoff discusses the 'troubles with the approximation' he introduces, namely: (1) the $d=2$ to $d=1$ crossover is completely missed; (2) a considerable inaccuracy in the determination of the value for ν is found; (3) the procedure leads to $\beta / \nu=0$ (which, for $d=2$, implies that the spin-spin correlation function critical exponent η vanishes). Difficulties (1) and (2) are absent from the present treatment; difficulty (3) is out of the scope of this work as we calculate neither a magnetic-type critical exponent nor quantities directly related to it (let us say, however, that this difficulty can be avoided by using procedures like those recently introduced by Martin and Tsallis (1981a, b); these procedures extend the present one which is recovered as one of its stages).

Incidentally we present (in §3) a renormalisation group (constructed in the (s_{x}, s_{y}) space instead of the (t_{x}, t_{y}) one) which has interesting universal properties: the set of fixed points and critical flow line (critical frontier) is independent of q and is that of bond percolation.

Acknowledgment

We acknowledge with pleasure computational assistance from G Schwachheim and E M F Curado.

References

Blöte H W, Nightingale M P and Derrida B 1981 J. Phys. A: Math. Gen. 14 L45
Burkhardt T W and Southern B W 1978 J. Phys. A: Math. Gen. 11 L247
Chaves C M, Oliveira P M C, Riera R and de Queiroz S L A 1979 Prog. Theor. Phys. 621550
Curado E M F, Tsallis C and Schwachheim G 1981 to be published
Ikeda H 1979 Prog. Theor. Phys. 61842
Kadanoff L P 1976 Ann. Phys. 100359
Kasteleyn P W and Fortuin C M 1969 J. Phys. Soc. Japan suppl. 2611
Kim D and Joseph R I 1975 J. Phys. A: Math. Gen. 8891
de Magalhães A C N, Tsallis C and Schwachheim G 1981 J. Phys. C: Solid State Phys. 141393
Martin H O and Tsallis C 1981a J. Phys. C: Solid State Phys. 145645

- 1981b Z. Phys. B 44325

Nakanishi H, Reynolds P J and Redner S 1981 J. Phys. A: Math. Gen. 14855
Nienhuis B, Berker A N, Riedel E K and Schick M 1979 Phys. Rev. Lett. 43737
den Nijs M P M 1979 J. Phys. A: Math. Gen. 121857
Oliveira P M C 1981 Phys. Rev. Lett. 471423
_- 1982 Phys. Rev. B 252034
Oliveira P M C, de Queiroz S L A, Riera R and Chaves C M 1980 J. Phys. A: Math. Gen. 132457
Riedel E K 1981 Physica A 106110
Riera R, Oliveira P M C, Chaves C M and de Queiroz S L A 1980 Phys. Rev. B 223481
Straley J P and Fisher M E 1973 J. Phys. A: Math., Nucl. Gen. 61310
Tsallis C 1981 J. Phys. C: Solid State Phys. 14 L85
Tsallis C and Levy S V F 1981 Phys. Rev. Lett. 47950
Tsallis C and de Magalhäes A C N 1981 J. Physique Lett. 42 L227

